Recommender Systems and Deep Learning in Python

Тема в разделе "Курсы по программированию", создана пользователем Красный Кут, 2 июн 2020.

Цена: 845р.
Взнос: 845р.

Основной список: 1 участников

  1. Красный Кут

    Красный Кут ЧКЧлен клуба (А)


    Чему вы научитесь
    • Understand and implement accurate recommendations for your users using simple and state-of-the-art algorithms
    • Big data matrix factorization on Spark with an AWS EC2 cluster
    • Matrix factorization / SVD in pure Numpy
    • Matrix factorization in Keras
    • Deep neural networks, residual networks, and autoencoder in Keras
    • Restricted Boltzmann Machine in Tensorflow

    Believe it or not, almost all online businesses today make use of recommender systems in some way or another.

    What do I mean by “recommender systems”, and why are they useful?

    Let’s look at the top 3 websites on the Internet, according to Alexa: Google, YouTube, and Facebook.

    Recommender systems form the very foundation of these technologies.

    Google: Search results

    They are why Google is the most successful technology company today.

    YouTube: Video dashboard

    I’m sure I’m not the only one who’s accidentally spent hours on YouTube when I had more important things to do! Just how do they convince you to do that?

    That’s right. Recommender systems!

    Facebook: So powerful that world governments are worried that the newsfeed has too much influence on people! (Or maybe they are worried about losing their own power... hmm...)


    This course is a big bag of tricks that make recommender systems work across multiple platforms.

    We’ll look at popular news feed algorithms, like Reddit, Hacker News, and Google PageRank.

    We’ll look at Bayesian recommendation techniques that are being used by a large number of media companies today.

    But this course isn’t just about news feeds.

    Companies like Amazon, Netflix, and Spotify have been using recommendations to suggest products, movies, and music to customers for many years now.

    These algorithms have led to billions of dollars in added revenue.

    So I assure you, what you’re about to learn in this course is very real, very applicable, and will have a huge impact on your business.

    For those of you who like to dig deep into the theory to understand how things really work, you know this is my specialty and there will be no shortage of that in this course. We’ll be covering state of the art algorithms like matrix factorization and deep learning (making use of both supervised and unsupervised learning - Autoencoders and Restricted Boltzmann Machines), and you’ll learn a bag full of tricks to improve upon baseline results.

    As a bonus, we will also look how to perform matrix factorization using big data in Spark. We will create a cluster using Amazon EC2 instances with Amazon Web Services (AWS). Most other courses and tutorials look at the MovieLens 100k dataset - that is puny! Our examples make use of MovieLens 20 million.

    Whether you sell products in your e-commerce store, or you simply write a blog - you can use these techniques to show the right recommendations to your users at the right time.

    If you’re an employee at a company, you can use these techniques to impress your manager and get a raise!

    I’ll see you in class!

    1 человеку нравится это.
  2. Последние события

    1. blackfish

      blackfish не участвует в складчине.

      1 дек 2020
    2. sungridmail

      sungridmail участвует в складчине.

      2 июл 2020
    3. Красный Кут

      Красный Кут не участвует в складчине.

      2 июл 2020
    4. skladchik.com

      Нужен организатор складчины.

      2 июл 2020

    Последние важные события

    1. skladchik.com

      Нужен организатор складчины.

      2 июл 2020
    2. skladchik.com

      Сбор взносов начинается 29.06.2020.

      27 июн 2020
    3. skladchik.com

      Красный Кут организатор складчины.

      2 июн 2020
  3. Красный Кут

    Красный Кут ЧКЧлен клуба (А)

    всем спасибо и до свиданья))
    1 человеку нравится это.

Поделиться этой страницей