

MEAP Edition
Manning Early Access Program

Isomorphic Web Applications
Universal Development with React

Version 10

Copyright 2017 Manning Publications

For more information on this and other Manning titles go to
www.manning.com

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/isomorphic-web-applications

http://www.manning.com
https://forums.manning.com/forums/isomorphic-web-applications

welcome
Thanks for purchasing the MEAP for Isomorphic Web Applications: Universal Development with
React. You’ll learn how to build isomorphic web applications using JavaScript, NodeJS, and
React. You’ll learn how to think about building apps that work in an isomorphic architecture
using tools like WebPack, Redux, Flux, Angular 2.0, and Ember.

This book is for you if you are a mid-level developer looking to expand their architectural
abilities and better understand the options available for building web apps. You’ve likely built a
single page application and have experience working with a node server either to serve a
single page app or as an API.

I’ve been building applications with isomorphic architecture for a while now. As a team
lead, I’ve used these concepts to deliver a performant product that works well for users and
SEO bots.

I have a passion for mentoring and teaching. Writing this book allows me to share my
knowledge with a broader audience (you!).It is my hope that you will benefit from using
isomorphic development in your applications.

As you're reading, I hope you’ll take advantage of the Author Online forum. I’ll be reading
your comments and responding. I appreciate any feedback, as it is very helpful in the
development process.

Thanks again!
—Elyse Kolker Gordon

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/isomorphic-web-applications

https://forums.manning.com/forums/isomorphic-web-applications

brief contents
PART 1: INTRODUCING XCODE AND SWIFT

 1 Introduction to Isomorphic Web Application Architecture

 2 A Sample Isomorphic App

PART 2: BUILDING YOUR INTERFACE

 3 React Overview

 4 Applying React

 5 Tools: Webpack and Babel

 6 Redux

PART 3: BUILDING YOUR APP

 7 Building the Server

 8 Isomorphic View Rendering

 9 Testing and Debugging

10 Handling Server/Browser Differences

11 Optimizing for Production

PART 4 FINALIZING YOUR APP

12 Other Frameworks: Implementing Isomorphic without React

13 Where to go from here

Front matter
Preface

In college, after a horrible holiday experience working for a major clothing retailer, I swore I
would find a better summer job. Having been a camp counselor as a teenager, I found myself
working at a tech camp. There I taught kids of all ages to make video games, build websites
and write code. It was rewarding to see how the kids entered a week of camp with little
technical knowledge and left with a working project to show off.

Ever since, I have been passionate about teaching, mentoring and sharing knowledge. I was
lucky in my early career to work for a company that encouraged these skills. I’m in a
leadership position, which gives me the opportunity to mentor many software engineers.

Despite this desire to teach and share, I never set out to write a book. It seems, however,
that writing and speaking naturally lead to other opportunities. After speaking at Strange Loop,
I was approached several months later by Manning to see if I would write a book on isomorphic
app development. Here was a chance to a chance to take everything I’ve learned as a maker of
web apps and share them with others. This was the perfect opportunity to teach a much wider
audience.

At Vevo, when we first started building an isomorphic app, I thought it was overly complex.
But as we continued and I could see the benefits in the long run, I became sold on the value it
adds for apps. This book seeks to explain this value and to demystify the complexity of building
an isomorphic app. It’s an attempt to distill what I’ve learned the past few years about both
real world React apps and real world isomorphic development. Wherever possible, I’ve related
the concepts to situations you will run into building production apps.

I hope this book expands your thinking and gives you a new architecture tool. It took me
some time to “think isomorphically.” Once I did, I grew both my architecture skills and my
understanding of the entire web stack. By sharing this knowledge with you, I hope you will be
able to grow in these areas as well.

Acknowledgements
I knew that this book was going to be a significant amount of work, but I could not fully

appreciate what writing a book on top of working full time would really mean. There are several
people that made it possible for me to successfully undertake this endeavor. I would like to
take this time to thank them.

First and most importantly I need to thank my husband, Max, for the continuous support
especially during the most stressful moments (sometimes even reminding me to eat and
sleep). Your willingness to sacrifice for me to work on this project means the world to me. And
I love that you acted as a technical consultant too! I’d like to also thank the rest of my family
for putting up with limited availability and distractedness throughout the process.

This book never would have made it without my Developmental Editor, Helen Stergius. I’m
grateful for your ongoing positivity and dedication to making the book the best it could be.
Additionally, your patience and understanding during this process made it easier to believe I
could and would finish the book.

In addition, thanks to everyone else at Manning who worked on this book. I have learned so
much from this process. Two people stand out. First, Brian Sawyer for giving me the
opportunity to write this book. Second, Doug Warren, Technical Development Editor. Your
thoroughness and attention to detail made the book better for the reader.

I also could not have done this without the support of all my awesome colleagues at Vevo.
Everyone has been extremely supportive! I especially want to thank Alex Nunes and Scott Dale
for supporting me throughout this project.

I’m lucky to have a community of friends and mentors who supported me in writing this
book. I’d like to acknowledge Jeff Carnegie for introducing me to isomorphic development and
for always believing in me. Additionally, I’d like to thank Jun Heider and David Hassoun who
showed me what it meant to be part of a developer community. I’d also like to thank Yomi
Fashoro, Ryan Kahn, Arthur Klepchukov, Grant Schofield and Natalie Serebryakova.

About this book
The main purpose of the book is to teach you to think in a way that will make you

successful when working with isomorphic architecture. Given React’s prevalence in the web
community and the support React provides for server-side rendering it is the logic choice to
teach how to build an isomorphic app.

The book starts by explaining what isomorphic apps are and why you would want to build
one. Then it shows a complete example from a 10,000-foot view. Then it moves into several
chapters on the core technologies used in a React app, followed by chapters on how to
implement isomorphic code and related advanced topics like testing, managing environments
and performance.

Who should read this book
This book is aimed at web developers with some professional experience. It is not for

beginners. If you are looking to expand your architectural toolset and better understand some
of the ways you can build web apps, this is a good book for you to read. This book can also
help you if you are trying to decide if you should build an isomorphic app.

You should have a solid understanding of JavaScript, CSS and HTML as the book assumes
you know these technologies. You do not need to know any of the technology or libraries
introduced in the book including React, Redux, webpack or Node.js with Express.

How this book is organized: a roadmap
This book has four sections divided into 13 chapters.
Part 1, First Steps, explains why you would want to use an isomorphic application and

teaches you what an isomorphic app is.

• Chapter 1 goes over what an isomorphic app is and why you would want to build it
(including challenges and tradeoffs). It also briefly introduces the major technologies
used throughout the book.

• Chapter 2 goes through a complete isomorphic example. This provides a 10,000-foot
view of a (simple) working application.

Part 2, Isomorphic App Basics, includes all the chapters that teach the foundational pieces
of a React app: React, React Router, Redux and webpack/Babel.

• Chapter 3 is an introduction to React. Topics covered include the Virtual DOM, writing
components with JSX, using props and implementing state.

• Chapter 4 builds on the introduction to React in chapter 3 by introducing React Router.
It also covers the React component lifecycle and advanced concepts on React
component architecture.

• Chapter 5 focuses on build tools: webpack and Babel. It explains the basics of using
both tools including how to use Babel in both the server and browser environments.

• Chapter 6 teaches you to use Redux, including how to hook it up to a React app.

Part 3, Isomorphic Architecture, covers how to implement an isomorphic app in detail as
well as several advanced topics.

• Chapter 7 implements the server for an isomorphic app using Express. It also introduces
all the concepts that make it possible to server render your application with Redux and
React.

• Chapter 8 picks up where chapter 7 leaves off and handles the isomorphic hand off
between server and browser as well as getting the Single Page Application flow up and
running with React.

• Chapter 9 talks about testing and debugging isomorphic apps. The first part of the
chapter focuses on various testing strategies and libraries you can use. The second part
introduces several useful development debugging tools.

• Chapter 10 goes over real world challenges and how to handle them including: code that
only runs in either the server or the browser, updating meta tags for SEO on the server
and creating a consistent approach to working with user specific information like User
Agent.

• Chapter 11 focuses on performance on both the server and browser, caching strategies
and handling user sessions.

Part 4, Applying Isomorphic Architecture with Other Tools, applies the concepts taught in
Part 3 to other frameworks and includes a chapter focused on what to learn this book.

• Chapter 12 introduces some alternative options for building isomorphic apps via Ember,
Angular and a React isomorphic framework called Next.js.

• Chapter 13 provides suggestions for expanding your skill set in ways that will support
you in building isomorphic apps and make you more hirable.

The first section (Chapters 1 & 2) provide an overview of isomorphic concepts and explain
why it matters. Everyone should read these chapters. The next section introduces each of the
major technologies used in building a React isomorphic app. If you have experience building
React apps and working with webpack, you can skip these chapters or read them as needed for
refreshers.

If you do not have experience with React apps, then make sure to read Chapters 3-6. Some
reviewers found it helpful to read these chapters before Chapter 2 if they had little or no
experience with React, Redux and webpack.

The third section teaches the isomorphic implementation and then goes over several
advanced topics like testing, managing environments and performance. The advanced chapters
(10-11) may be read straight through or ad hoc as need.

Finally, the fourth section is optional – you can explore additional frameworks and go over
suggestions for expanding your skill set.

About the Code
This book contains many examples of source code both in numbered listings and in line with

normal text. In both cases, source code is formatted in a fixed-width font like this to
separate it from ordinary text. Sometimes code is also in bold to highlight code that has
changed from previous steps in the chapter, such as when a new feature adds to an existing
line of code.

In many cases, the original source code has been reformatted; we’ve added line breaks and
reworked indentation to accommodate the available page space in the book. In rare cases,
even this was not enough, and listings include line-continuation markers (➥). Additionally,
comments in the source code have often been removed from the listings when the code is
described in the text. Code annotations accompany many of the listings, highlighting important
concepts.

The code for this book is split up into several Github repositories. The full list can be found
at https://github.com/isomorphic-dev-js. I’ve also provided a list mapping chapters to their
repos:

• Chapter 2: https://github.com/isomorphic-dev-js/chapter2-a-sample-isomorphic-app
• Chapter 3: https://github.com/isomorphic-dev-js/chapter3-react-overview
• Chapter 4, 7, 8, 9, 10, 11: https://github.com/isomorphic-dev-js/complete-isomorphic-

example
• Chapter 5: https://github.com/isomorphic-dev-js/chapter5-webpack-babel
• Chapter 6: https://github.com/isomorphic-dev-js/chapter6-redux
• Chapter 12: https://github.com/isomorphic-dev-js/chapter12-frameworks

Most of the repos use branches to help teach you the concepts. In each chapter that uses
branches I will indicate what branch goes with each section. Each branch provides the base
code for the section you are working on, but not the complete solution for that section. The
complete solution is found in the next section’s branch as well as in the branches labeled with a
“-complete”. The idea is to check out the branch, add the code from the section of the book

https://github.com/isomorphic-dev-js
https://github.com/isomorphic-dev-js/chapter2-a-sample-isomorphic-app
https://github.com/isomorphic-dev-js/chapter3-react-overview
https://github.com/isomorphic-dev-js/complete-isomorphic-example%E2%80%A2
https://github.com/isomorphic-dev-js/complete-isomorphic-example%E2%80%A2
https://github.com/isomorphic-dev-js/complete-isomorphic-example%E2%80%A2
https://github.com/isomorphic-dev-js/chapter5-webpack-babel
https://github.com/isomorphic-dev-js/chapter6-redux
https://github.com/isomorphic-dev-js/chapter12-frameworks

you are working on and end up with a working example. The “complete” branches are provided
in case you get lost or stuck.

CODE VERSIONS
The code in the book assumes the following versions of libraries and tools are being used.

You are welcome to try to upgrade versions on your own, but I make no guarantees about
future versions of libraries working smoothly.

• Node.js: v6.9.2 is what everything in the book was developed and tested on. Newer
versions of Node through at least 8 should also work.

• Express: v4.15.3.
• React: v15.6.1. Version 16 came out right as this book was going to print. We have

verified that the code samples work with React 16 but the code in the book was built
with React 15.

• React Router: v3.0.5. React Router 4 does exist, but I explicitly decided not to use it for
this book. React Router 3 provides an easier to use server implementation and will
continued to be supported. Feel free to explore React Router 4 for your own projects – I
provided additional information in Chapter 4.

• Redux: v3.7.2
• Webpack: v3.4.1.
• Babel: v6.25.0.
• Angular: v4.0.0 (casually referred to as Angular 2, as opposed to Angular 1).
• Ember v2.13.2.
• Next.js: v2.4.4.

There are many other libraries introduced throughout the book. Please refer to the
package.json in the chapter’s repo for a complete list of versions.

Author online
The Author Online section details the reader’s access to the forum for questions on the book

hosted by Manning at http://forums.manning.com. Manning will add this information and a link
to your forum.

Other online resources
If you wish, you may list a few additional websites and online resources where readers can

learn more about the subject of your book.

About the authors
Elyse Kolker Gordon is an engineering leader who is experienced at building client apps in

consumer spaces like sports and music. She is passionate about developing engineers, building
cohesive teams and creating great consumer apps. Currently, she is Director of Web
Engineering at Vevo where she regularly solves challenges with isomorphic apps. She speaks
and writes regularly about web development topics. She is also an avid musician who plays the

http://forums.manning.com

drums and dabbles with other instruments. When she is not at work you can find her hanging
out with her husband and dog, either at home or at the beach.

Dedication (optional)
• To my mom, my first editor.
• And to Norma Lee Williams and Richard Allen Kolker who each encouraged me to be

creative, think critically and walk through the world with compassion.

About the cover illustration
The last section is a brief description about the costume illustration on the cover of your

book. Manning will add this if needed.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/isomorphic-web-applications

https://forums.manning.com/forums/isomorphic-web-applications

Part 1
Introducing Xcode and Swift

Many people have ideas for awesome apps, but you have decided to do something about it,
take the plunge and learn iOS app development. Congratulations and good luck on your
journey!

Before you get too deep into the ins and outs of app development, you need to focus on
foundation skills. In this part, you’ll explore the development environment and learn about
Apple’s language for development in iOS, Swift.

In chapter 1, you’ll examine Xcode, Apple’s own software for building iOS apps.
Then, in chapters 2 and 3, you’ll take a lightning tour of what’s new, different, and exciting

in Swift. Chapter 2 focuses more on different syntax and data types, while chapter 3 takes a
look at objects in Swift. You’ll explore Swift in Xcode playgrounds, a tool that helps you focus
purely on programming, without concerning yourself with app development.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/isomorphic-web-applications

1

https://forums.manning.com/forums/isomorphic-web-applications

1
Introduction to Isomorphic Web

Application Architecture

In this chapter, we will cover:

• Differentiating between isomorphic, server-side rendered and single-page apps
• Server rendering and the steps involved in transitioning from a server-rendered to a single-

page app experience
• The advantages and challenges of isomorphic web apps
• Building isomorphic web apps with React’s virtual DOM
• Using Redux to handle the business logic and data flow
• Bundling modules with dependencies via webpack

This book is intended for web developers looking to expand their architectural toolset and
better understand the options available for building web apps. If you’ve ever built a single-page
or server-rendered web app (say with Ruby on Rails) then you will have an easier time
following the content in the book. Ideally, you are comfortable with JavaScript, HTML and CSS.
If you are new to web development then this book is not for you.

Historically web apps and web sites have come in two forms: server-rendered and single-
page apps (SPA). Server-rendered apps hanlde each action the user takes by making a new
request to the server. On the other hand, SPA apps handle loading the content and responding
to user interactions entirely in the browser. Isomorphic web apps are a combination of these
two approaches.

This book aspires to take a complex application architecture and break it down into
repeatable and understandable bits. By the end of this book you will be able to create a content
site or an ecommerce web app with the following techniques:

2

• Render any page on the server using React to achieve fast perceived performance and
fully render pages for SEO crawlers (like Googlebot).

• Choose not to render certain features on the server. Understand how to use the React
lifecycle to achieve this.

• Handle user sessions on both the server and the browser.
• Implement single direction data flow with Redux, making prefetching data on the server

and rendering in the browser feasible.
• Use webpack and Babel to enable a modern JavaScript workflow.

1.1 Isomorphic Web App Overview
My team and I had a big problem: our SEO rendering system was brittle and eating up

valuable time. Instead of building new features, we were troubleshooting why Googlebot was
seeing a different version of our app from what our users were seeing. The system was
complex, involved a third-party provider and wasn’t scaling well for our needs. So we moved
forward with a new type of app – an isomorphic one.

An isomorphic app is a web app that blends a server-rendered web app with a single-page
application. On the one hand, we want to take advantage of fast perceived performance and
SEO-friendly rendering from the server. On the other hand, we want to handle complex user
actions in the browser (e.g., opening a modal). We also want to take advantage of the browser
push history and XMLHttpRequest (XHR). These technologies prevent us from making a server
request on every interaction.

To get started understanding all of this, we’re going to use an example web app called All
Things Westies (you will build this app later in the book – starting in Chapter 4). On this site,
you can find all kinds of products to buy for your Westie. (West Highland White Terrier, a small
white dog). You can purchase dog supplies and buy products featuring Westies (socks, mugs,
shirts, etc.). If you are not a pet owner, you might find this example ridiculous. As a dog
owner, I even thought it was over the top. However, it turns out that dog products as mugs are
a huge thing. If you don’t believe me, google “pug mugs.”

Since this is an ecommerce app, we care about having good Search Engine Optimization
(SEO). We also want our customers to have a great experience with performance on the app.
This makes it an ideal use case for isomorphic architecture.

1.1.1 How it works
Look at Figure 1.1 which is a wireframe for the All Things Westies app. There is a standard

header with some main site navigation on the right. Below the header, the main content areas
promote products and the social media presence.

3

Figure 1.1 A wireframe showing the home page for allthingswesties.com, an isomorphic web app.

The first time you come to the site, the app content is rendered on the sever. This is done
using server-rendered techniques with Node.JS. After being server-rendered, it is sent to the
browser and displayed to the user. As the user navigate around the pages, looking for a dog
mug or supplies, each page is rendered by the JavaScript running in the browser using SPA
techniques.

The All Things Westies app relies on reusing as much code as possible between the server
and the browser. The app relies on JavaScript’s ability to run in multiple environments:
JavaScript runs in browsers and also runs on the server via Node.js. While JavaScript can run
in other environments as well (e.g. on Internet of Things devices and on mobile via React
Native), the focus here is on web apps that run in the browser.

Many of the concepts in this book could be applied without writing all of the code in
JavaScript. Historically, the complexity of running an isomorphic app without being able to
reuse code has been prohibitive. While possible to server-render your site with Java or Ruby
and then transition to a single page app, it isn’t commonly done because it requires duplicating
large portions of code in two languages. This has a high cost in the maintenance of an app.

4

Figure 1.2 Isomorphic apps build and deploy the same JavaScript code to both environments.

To see this flow in action, take a look at Figure 1.2. It shows how the code for All Things
Westies gets deployed to the server and the browser. In other words, the server code is
packaged and run on a Node.JS web server, while the browser code is bundled into a file that is
later downloaded in the borwser. Since we take advantage of JavaScript running in both
environments, the same code that runs in the browser and talks to our API or data source also
runs on the server to talk to our backend.

1.1.2 Building our stack
Building an app like All Things Westies requires putting together several well-known

technologies. Many of the concepts in this book are executed with open source libraries. While
it would be possible to build an isomorphic app using few or no libraries, it is highly
recommended to take advantage of the JavaScript communities’ efforts in this area.

TIP Make sure any libraries you include in an isomorphic app support running in both the server and browser

environments. Checkout Chapter 10 for what to watch out for and how to handle differences in environments.

If you intend to only use a library on the server, then you don’t need to check for browser computability.

The HTML components that display the products, i.e. the view, will be built with React (in
Chapter 12 we explore how to use other popular frameworks like Angular 2 and Ember to
implement isomorphic architecture). We will use a single direction data flow via Redux, the

5

current community standard data management in React apps. We will use webpack to compile
the code that runs in the browser and to enable running Node.JS packages in the browser.

On the server side, we will build a Node.js server using Express to handle routing. We will
take advantage of React’s ability to render on the server and use it to build up a complete
HTML response that can be served to the browser. Table 1.3 shows how all these pieces fit
together.

Library (version) Server Browser Build Tool

NodeJS (6.9.2) √

Express (4.15.3) √

React (15.6.1) √ √

React Router (3.0.5) √ √

Redux (3.7.2) √ √

Babel (6.25.0) √ √ √

webpack (3.4.1) √ √

Table 1.3 The technologies used in an isomorphic app and what environments they run in.

To make our application work everywhere, we will build in data prefetching for our routes
using React Router. We will also handle differences in environments by building separate code
entry points for the server and browser. In cases where code can only be run in the browser we
will gate the code or take advantage of the React lifecycle to ensure the code won’t run on the
server. I will introduce React in Chapter 3 and the specifics of the server logic in Chapter 7.

1.2 Architecture Overview
Earlier in this chapter, I told you about how an isomorphic application is the result of

combining a server-rendered application and a single-page application.To get a better
understanding of how we connect the concepts of a server-rendered application and a single-
page application let's refer to Figure 1.4. This figure shows all the steps involved in getting an
isomorphic app rendered and responding to user input like a single-page application, starting
when the user enters the web address.

6

Figure 1.4 The isomorphic app flow from initial browser request to SPA cycle.

1.2.1 Application Flow
Every web app session is initiated when a user navigates to the web app or types the URL

into the browser window. For allthingswesties.com, when a user clicks on a link to the app from
an email or from searching on Google, the flow on the server goes through the following steps.
(The numbers match up with Figure 1.4.)

1. The browser initiates the request.

2. The server receives a request.

3. The server determines what needs to be rendered.

4. The server gathers the data required for the part of our application being requested. If
the request is for allthingswesties.com/product/mugs, the app requests the list of gift
items for sale through the site. This list of mugs, along with all the information to be

7

displayed (names, descriptions, price, images), is collected before moving on to the
render step.

5. The server generates the HTML for our web page using the data collected for the mugs
page.

6. The server responds to the request for allthingswesties.com/product/mugs with the
fully-built HTML.

The next part of the application cycle is the initial load in the browser. We differentiate the
first time the user loads the app from subsequent requests because several things that will only
happen once per session happen during this first load.

DEFINITION Initial load is the first time the user interacts with our website. This means the first time the

user clicks a link to our site in a Google search, from social media or types it directly into the web address

bar.

The first load on the browser begins as soon as the HTML response from the server is
received and the DOM is able to be processed. At this point, single-page application flow takes
over and the app responds to user input, browser events, timers, etc. The user can add
products to their cart, navigate around the site and interact with forms.

1. The browser renders the markup received from the server.

2. The application is now able to respond to user input.

3. When the user adds an item to their cart, the code responds and runs any business logic
necessary.

4. If required, the browser talks to the backend to fetch data.

5. React renders the components.

6. Updates are made and any repaints are executed. The user’s cart icon updates to show
that an item has been added.

7. Each time the user interacts with the app, steps 9-12 repeat.

1.2.2 Handling the server-side request
Now let’s take a closer look at what happens when the server receives the initial request to

render the page. Look at what part of the site renders on the server. Figure 1.5 is similar to the
one at the beginning of the chapter (Figure 1.1) but it differs in that it does not render the
twitter widget. The Twitter widget is designed to be loaded in the browser so it doesn’t render
on the server.

8

Figure 1.5 The server-rendered version of the allthingswesties home page.

The server does three important things. First, it fetches the data required for the view. Then
it takes that data and uses it to render the DOM. Finally, it attaches that data to the DOM so
the browser can read in the app state. Let’s step through Figure 1.9 which shows the flow on
the server.

Figure 1.6 App flow for the initial server render

1. The server receives a request.

2. The server fetches the required data for that request. This can be from either a
persistent data store like a MySQL or NoSQL database or from an external API.

3. Once the data is received, the server can build the HTML. It generates the markup with
React’s virtual DOM via React’s renderToString method.

9

4. The server injects the data from step 2 into our HTML so the browser can access it later.

5. The server responds to the request with our fully built HTML.

1.2.3 Rendering in the Browser
Now let’s look more closely at what happens on the browser. Figure 1.7 shows the flow in

the browser, from the point the browser receives the html to the point it bootstraps the app.

1. The browser starts to render the mugs page immediately because the HTML sent by the
server is fully formed with all the content we generated on the server. This includes the
header and the footer of our app along with the list of mugs for purchase. The app
won’t respond to user input yet. Things like adding a mug to the cart, or
viewing the detail page for a specific mug won’t work.

2. When the browser reaches the entry JavaScript for our application, the application
bootstraps.

3. The virtual DOM is recreated in React. Since the server sent down the app state, this
virtual DOM is identical to the current DOM.

4. Nothing happens! React finds no differences between the DOM and the virtual DOM it
built (the virtual DOM is explained in depth in Chapter 3). The user is already being
shown the list of mugs in the browser. The application can now respond to user
input, like adding a mug to the cart.

Figure 1.7 Browser Render & Bootstrap – between steps 1 and 4, the app won’t respond to user input.

This is when the single-page application flow kicks again. This is the most straightforward
part. It handles user events, makes XHR calls and updates the application as needed.

1.3 Advantages of Isomorphic App Architecture
At this point, you may be thinking to yourself that this sounds complicated. You may be

wondering why this approach to building a web app would ever be worth it. There are several
compelling reasons to go down this path:

10

• Simplified and improved SEO – bots and crawlers can read all of the data on page load.
• Performance gains in user perceived performance.
• Maintenance gains
• Improved accessibility because the user can view the app without JavaScript.

There are also some challenges and tradeoffs that come with isomorphic app architecture.
There is an increased complexity in managing code running in multiple environments when
building out a production ready app that is properly built and deployed. Debugging and testing
are more complicated. Server-rendered HTML via Node.js and React can be slow for views that
have many components. For example, a page that displays many items for sale might quickly
end up with hundreds of React components. As this number increases, the speed at which
React can build these components on the server declines. First we’ll cover the benefits of
building an isomorphic app. Let’s start by discussing SEO.

1.3.1 SEO Benefits
Our example app, allthingswesties.com is an ecommerce site so to be successful it needs

shoppers! It needs good SEO to maximize the number of people that come to the app from
search engines. Single-page applications are difficult for search engine bots to crawl because
they don’t load the data for the app until after the JavaScript has run in the browser.
Isomorphic apps also need to bootstrap after JavaScript is run, but because their content is
rendered by the server, neither users nor bots have to wait for the application to bootstrap in
order to see the content of the site.

DEFINITION Bootstrapping our application is when we run the code required to get everything setup. This

code is only run once on the initial load of our application. This code is run from the entry point of our browser

application.

On the All Things Westies app, we want to make sure all of the SEO-relevant content is fetched on the server

so that we don’t rely on the SEO crawlers to try and render our page. Crawlers (both search bots like Google or

Bing and share bots like Facebook) either can't run all of this code or they don't want to wait long enough for

this code to run. For example, Google will try to run JavaScript but penalizes sites that take too long for the

content to load. This can be seen in the warning shown in Figure 1.8. This warning shows up when we enter a

URL for a single-page application into the Google page speed insights tool.

Google Page Speed Insights Tool
This tool helps measure how your page is doing on a scale of 0 – 100. You get a score for both speed-related issues

(size of images, size of JavaScript, magnification, roundtrips made, etc.) and UI (size of click areas, etc.). Test it out on
your web app at: https://developers.google.com/speed/pagespeed/insights.

Google also has the lighthouse tool (available as a Chrome extension or command line tool) which will run an in-
depth analysis of pages on your site. It makes recommendations on everything from performance, to using service
workers to allow offline use, to improved accessibility for screen readers. You can learn more about lighthouse at
https://developers.google.com/web/tools/lighthouse/.

11

https://developers.google.com/speed/pagespeed/insights
https://developers.google.com/web/tools/lighthouse/

Figure 1.8 Google Page Speed Insights warning for a single-page application. The application makes too many
AJAX calls to fetch visible content after the initial load of the page.

If you don’t deal with this warning, you may end up with a lower ranking and fewer
customers. Also, there is no guarantee that any page content that relies on API calls will be run
by the crawler. Whole services have popped into existence to solve this problem for single-page
apps. Dev teams pour time into developing systems to crawl and pre-render their pages. They
then redirect bots to these pre-rendered pages. These systems are complex and brittle to
maintain.

Personally, I can’t wait for the day when crawlers and bots will be able to get to all our
content regardless of when the data is fetched (on the server or in the browser). Until that day,
server-rendering the initial content gives a big advantage over single-page application
rendering. This is especially true for above-the-fold content and any other content that has
SEO benefits.

DEFINITION Above-the-fold is a term that comes from the newspaper business. It referred to all the

content that showed on the front page when the newspaper was folded in half and sitting on a newsstand.

For web apps, this term is used to refer to all of the content that is in the viewable area of a users screen

when the app loads. In order to see below the fold content, the user must scroll.

In addition to SEO crawlers, many social sites and apps that allow inline website previews
(e.g. Facebook, Twitter, Slack or WhatsApp), also use bots that don’t run JavaScript. These
sites assume that all of the content that is available to build a social card or inline preview will
be available on the server-rendered page. Isomorphic apps are ideal for handling the social bot
use case.

At the beginning of this section, I mentioned that both bots and users don’t need to wait for
the isomoprhic application to bootstrap to see the dynamic content. Another way to say this is
that the perceived performance of isomorphic web apps is very fast. The next section describes
this in detail.

12

1.3.2 Performance Benefits
Users want to see the content of allthingswesties.com right away. Otherwise they will get

impatient and leave before seeing all the products and information being offered. Loading a
SPA can be a slow experience for a user (especially on mobile phones). Even though the
browser may connect quickly to your application, it takes time to run the startup code and
fetch the content which leaves the user waiting. In the best case scenario, SPAs display loading
indicators and messaging for the user. In the worst case scenario, there is no visual feedback
and the user is left wondering if anything is happening.

Figure 1.9 shows what the All Things Westies would look like during the initial rendering if it
was a single-page application. Instead of seeing all of the content immediately, we would see
loading spinners in all of the content areas.

Figure 1.9 In a single-page app version of All Things Westies spinners would be shown during the first load
instead of the real content.

A server-rendered page displays its content (all of the HTML, images, CSS and data for your
site) to the user as soon as the browser receives and renders the HTML. This leads to content
being seen by the user several seconds faster than in a SPA. While the site still requires
JavaScript to be loaded and executed before user interactions can take place, this fast load
allows the user to start visually processing your content quickly. This is called perceived
performance. The app content is presented to the user quickly. The user is not aware that
JavaScript is being run in the background.

When executed well, the user will never know that the JavaScript loaded after the view
rendered. For all practical purposes, your user has a great experience because they believe the

13

app loaded fast. This greatly cuts down on the need for loading spinners or other waiting states
on the first load of the app. This leads to happier users.

Figure 1.10 Comparison of when the user sees the content of a web app. An isomorphic app displays its content
much sooner than a single-page app.

Now I will walk you through the single-page app and isomorphic scenarios in detail. You can
see these flows in Figure 1.10 as well.

First take Example 1 from the figure. Imagine going to our example web app and being
shown a blank screen for 6 seconds. What would you do? How likely are you to get frustrated
and give up on using that web app? If you were looking to buy a pair of Westie socks, you
would be inclined to give up on All Things Westies and take your business elsewhere.

Now imagine that the web app still took 6 seconds to load (like in Example 2), but this time
it showed you some basic structure a loading spinner to let you know that the web app is doing
something but you can’t interact with it yet, just like in Figure 1.9 earlier in this chapter. Are
you willing to wait for this site to load?

Finally, let’s imagine that when you come to allthingswesties.com you see the content in
under 2 seconds as shown in Example 3 in Figure 1.10. This flow mathches with Figure 1.1 at
the beginning of the chapter. This time your brain starts processing the information as soon as
it is displayed. You don’t feel like you had to wait. In the background, the app is still loading
and working to get everything set up, but you don’t have to wait for this to finish before being
able to see the content and interact with the app.

Notice how the app is able to show content much earlier in the page load flow. While the
actual page load time as measured by performance metrics will be the same in all three
approaches, the user perceives the performance of an isomorphic app to be much faster.

1.3.3 No JavaScript? No problem!
Another user-facing benefit of isomorphic app architecture is that you can serve portions of

your site without requiring JavaScript. Users that can’t or don’t want to run JavaScript can still
benefit from using your site when it’s built isomorphically. Since you serve a complete page to

14

the browser, users can at least see your content despite not being able to interact with the
app.

This allows you to use progressive enhancement to better provide for users across a
spectrum of browsers and devices. While it may be unlikely to encounter a user with no
JavaScript running there are other good reasons for loading a full page from the server. For
example, if you support older browsers or devices, isomorphic apps are a good tool for
providing the best experience possible across a multitude of browser/device/OS combinations.

We’ve covered the user-facing benefit of isomorphic apps. Next we will look at the
developer benefits that come with this architecture.

1.3.4 Maintenance and developer benefits
When building an isomorphic app, the majority of the code can be run on both the server

and the browser. This means that if you want to render a view, you only need to write your
code once. If you want to have some helper functions for a common task in the app, you only
need to write this logic once and it will run in both places.

This is an advantage over apps that have server-side code written in one language and
browser code written in JavaScript. It also means developers can keep their focus without
having to switch between languages. Builds, environment management and dependencies are
all simplified, which makes your overall workflow cleaner.

This is not to say that building isomorphic apps is easy. Writing everything in one language
comes with its own set of problems.

1.3.5 Challenges and Tradeoffs
Choosing to build an app with isomorphic web architecture is not without tradeoffs. For one,

it requires a new way of thinking which takes time to adjust to. The good news is that’s what
you will learn in this book. Some of the challenges include:

• Handling the differences between Node.JS and the browser.
• Debugging and Testing Complexity
• Managing performance on the server

HANDLING THE DIFFERENCES BETWEEN THE SERVER AND THE BROWSER

Node has no concept of a window or document. The browser doesn’t know about Node
environment variables or have any idea what a request or response object is. Both
environments know about cookies, but they handle them in very different ways. In Chapter 10
we will look at strategies for dealing with these environment tensions.

DEBUGGING AND TESTING COMPLEXITY

All your code needs to be tested twice: loaded directly off of the server and as part of the
single page flow. Debugging requires mastery of both browser and server debugging tools and
knowing whether a bug is happening on the server, on the browser or in both environments.
Additionally, a thorough unit testing strategy is needed, where tests are written and run in the

15

appropriate environments. In other words, server only code should be tested in Node, but
shared code should be tested in all the environments where it will eventually be run.

MANAGING PERFORMANCE ON THE SERVER
Performance on the server also presents a challenge as the React provided

renderToString method is slow to execute on complex pages with many components. In
Chapter 11 we will show you how to optimize your code as much as possible without breaking
React best practices. We will also discuss caching as a tool to minimize issues with server
performance.

At this point, you understand the benefits and tradeoffs that come with isomorphic app
architecture. Next let’s take an in depth look at how we execute an isomorphic app.

1.4 Building the view with React
React is one of the pieces that makes building an isomorphic web app possible. React is a

library, open sourced by Facebook, for creating user interfaces (the view layer in your app).
React makes it easy to express your views via HTML and JavaScript. It provides a simple API
that is easy to get up and running with but that is designed to be composable in order to
facilitate building user interfaces quickly and efficiently. Like many other view libraries and
implementations, it provides a template language (JSX) and hooks into commonly used parts of
the DOM and JavaScript.

React also takes advantage of functional concepts by adhering to single direction data flows
from the top level component down to its children. What makes it appealing for isomorphic
apps is how it uses a virtual DOM to manage changes and updates to the application

React is not a framework like Angular or Ember. It only provides the code that you use to
write your view components. It can fit easily into a Model View Controller (MVC) style
architecture as the View. .However, there is a recommended way to build complex React apps,
which will be covered throughout the book.

1.4.1 Understanding the Virtual DOM
The virtual DOM is a representation of the browser DOM written with JavaScript. At its core,

React is composed of React Elements. Since React introduced the virtual DOM to the web
community, this idea has started to show up in many major libraries and frameworks. Some
people are even writing their own virtual DOM implementations.

Like the Browser DOM, the virtual DOM is a tree comprised of a root node and its child
nodes. Once the virtual DOM is created, React compares the virtual tree to the current tree and
calculates what updates it needs to make to the browser DOM. If nothing has changed, no
update is made. If changes have occurred, React updates only the parts of the browser’s DOM
that have changed. Figure 1.11 shows what happens at this point. On the left, the virtual DOM
has been updated to remove the right subtree with the <div> tag whose children are an
 tag and a <a> tag. This results in these same children being removed from the browser
DOM.

16

Figure 1.11 Comparing the DOM trees: The Virtual DOM changes are compared to the browser DOM. Then React
intelligently updates the browser DOM tree based on the calculated diff.

React uses JavaScript to represent DOM nodes. In JavaScript this is written as:

let myDiv = React.createElement(‘div’);

When a React render occurs, each component returns a series of React Elements. Together
they form the virtual DOM, a JavaScript representation of the DOM tree.

Since the virtual DOM is a JavaScript representation of the browser DOM and is not
dependent on browser-provided objects like the window and document (although certain code
paths may depend on these items), it can be rendered on the server. However, rendering an
actual DOM on the server wouldn’t work. Instead React provides a way to output the rendered
DOM as a string (ReactDOM.renderToString). This string can be used to build a complete
HTML page that is served from our server to the user.

1.5 Business Logic and Model: Redux
In real-world web apps, you need a way to manage the data flow. Redux provides an

application state implementation that works nicely with React. It’s important to note you don’t
have to use Redux with React or vice-versa, but their concepts mesh well as they both leverage
functional programming ideas. It is also a community best practice.

1.5.1 One Way Data Flow
Like React, Redux follows a single direction flow of data. Redux holds the state of your app

in its store, providing a single source of truth for your application. To update this store, actions
(JavaScript objects that represent a discrete change of app state) are dispatched from the
views. These actions in turn trigger reducers. Reducers are pure functions (a function with no
side effects) that take in a change and return a new store after responding to the change.
Figure 1.12 shows this flow.

17

Figure 1.12 The view (React) uses Redux to update the app state when the user takes an action. Redux then let’s
the view know when it should update based on the new app state.

The key thing to remember about Redux is that only reducers can update the store. All
other components can only read from the store. Additionally, the store is Immutable. This is
enforced via the reducers. I will cover this again in Chapter 2 and do a full Redux explanation
in Chapter 6.

The ability to transfer state between server and browser is important in an isomorphic app.
Redux’s store provides top level state. By relying on a single root object to hold our application
state, we can easily serialize our state on the server and send it down to the browser to be
deserialized. Chapter 7 covers this topic in more detail. The final piece of the app is the build
tool. The next section gives an overview of webpack.

1.6 Building the app: webpack
Webpack is a powerful build tool that makes packaging code into a single bundle easy. It

has a plugin system in the form of loaders, allowing simple access to tools like Babel for ES6
compiling or Less/Sass/PostCSS compiling. It also lets us package Node module code (npm
packages) into the bundle that will be run in the browser.

DEFINITION There are many names for current and future JavaScript versions (ES6, ES2015, ES2016,

ES7, ES Next). To keep things consistent I refer to modern JavaScript that is not yet 100% adopted in

browsers as ES6.

This is key for our isomorphic app. By using webpack we can bundle all of our dependencies
together and take advantage of the ecosystem of libraries available via npm, the Node package

18

manager. This allows you to share nearly all of the code in your app with both environments –
the browser and the server.

NOTE We won’t use webpack for our Node.js code. This is unnecessary as we can write most ES6 code on

Node and Node can already take advantage of environment variables and npm packages.

Webpack also lets you use environment variables inside of your bundled code. This is
important for our isomorphic app. While we want to share as much code between environments
as possible, some code from the browser can’t run on the server and vice versa. On a node
server, we can take advantage of an environment variable like this:

if (NODE_ENV.IS_BROWSER) { // execute code }

However, this code won’t run in the browser because it has no concept of node environment
variables. We can use webpack to inject a NODE_ENV object into our webpacked code, so that
this code can run in both environments. This concept will be taught in depth in Chapter 5.

1.7 Summary
In this chapter you learned that isomorphic web apps are the result of combining server-

rendered HTML pages with single-page application architecture. This has several advantages
but does require learning a new way of thinking about web app architecture. The next chapter
presents a high level overview of an isomorphic application.

• Isomorphic web apps blend server-side architecture and single-page app architecture to
provide a better overall experience for users. This leads to improved perceived
performance, simplified SEO and developer benefits.

• Being able to run JavaScript on the server (Node.js) and in the browser allows us to
write code once and deploy it to both environments.React’s virtual DOM lets us render
HTML on the server.

• Redux helps us manage application state and easily serialize this state to be sent from
the server to the browser.

• By building our app with webpack, we can use Node code in the browser and flag code
to run only in the browser.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/isomorphic-web-applications

19

https://forums.manning.com/forums/isomorphic-web-applications

	Isomorphic Web Applications: Universal Development with React MEAP v10

	Copyright
	Welcome
	Brief contents
	Front matter

	Preface
	Acknowledgements
	About this book
	Who should read this book
	How this book is organized: a roadmap
	About the Code
	Author online
	Other online resources

	About the authors
	Dedication (optional)
	About the cover illustration

	Part 1: Introducing Xcode and Swift

	Chapter 1: Introduction to Isomorphic Web Application Architecture

	1.1 Isomorphic Web App Overview
	1.1.1 How it works
	1.1.2 Building our stack

	1.2 Architecture Overview
	1.2.1 Application Flow
	1.2.2 Handling the server-side request
	1.2.3 Rendering in the Browser

	1.3 Advantages of Isomorphic App Architecture
	1.3.1 SEO Benefits
	1.3.2 Performance Benefits
	1.3.3 No JavaScript? No problem!
	1.3.4 Maintenance and developer benefits
	1.3.5 Challenges and Tradeoffs

	1.4 Building the view with React
	1.4.1 Understanding the Virtual DOM

	1.5 Business Logic and Model: Redux
	1.5.1 One Way Data Flow

	1.6 Building the app: webpack
	1.7 Summary

